| poster # | Abstract Title | Firstname | Surname | keywords | City | Country | |----------|---|------------|--------------------|--|------------|------------------| | P01 | Development of machine-learning based hyperspectral endoscopy for the early detection of oesophageal cancer using convolutional neural networks | Alexandru | Grigoroiu | convolutional neuronal
network, Data Processing,
Machine learning | Cambridge | UK | | P02 | Using multi-task learning to faithfully encode patches from histopathology images | Prateek | Katiyar | Autoencoders, Deep
learning, Multi-task
learning | Tübingen | Germany | | P03 | Big Data Generation by Fully Automated Biomarker
Quantification in Medical Imaging using Deeply
Supervised Convolutional Neural Networks. | Ana | Jiménez-
Pastor | Biomarkers, Deep learning,
Medical Imaging | Valencia | Spain | | P04 | Classification of ovarian tissue using texture analysis and optical coherence tomography | Travis | Sawyer | classification, optical coherence tomography | Tucson | United
States | | P05 | Advanced imaging flow cytometry | Andreas | Kleiber | convolutional neuronal network, Imaging flow cytometry | Jena | Germany | | P06 | A wide-field multi-modal imaging system for the rapid characterisation of the optical properties of ex vivo tissue in clinic | Wilson | Abby | Multi-modal, Oesophageal
Cancer, Optical Imaging | Cambridge | UK | | P07 | Increasing the information content of tomographic microscopy data by using automatic feature based projection registration | Athanasios | Zacharopoulos | co-registration, light sheet
fluorescent microscopy,
Optical Imaging | Heraklion | Greece | | P08 | Complex data analysis of label-free cellular fluorescence. | Dusan | Chorvat | analysis, autofluorescence,
Multi-modal | Bratislava | Slovakia | | P09 | A Data Access Management System for the OCTOPUS Imaging Cluster | Jianguo | Rao | Active directory integration, data access control | Didcot | UK | | P11 | Data fusion of Raman spectroscopic imaging and MALDI imaging for liver cancer diagnostic | Oleg | Ryabchykov | MALDI imaging, Raman spectroscopic imaging | Jena | Germany | | P12 | Predictive Modeling of the Antibiotics Susceptibility of E. coli Strains Based on Image Analysis Techniques | Nairveen | Ali | | Jena | Germany | | P13 | Using deep neural networks for classifying complex features in diffraction images | Julian | Zimmermann | coherent diffraction imaging, deep neural networks, image classification | Berlin | Germany | | poster# | Abstract Title | Firstname | Surname | keywords | City | Country | |---------|--|----------------|---------------------|---|---------------------|-------------| | O20 | A processing pipeline for big data in high-resolution microscopy | Giacomo | Mazzamuto | 3D stitching, cell segmentation, high-resolution microscopy | Sesto
Fiorentino | Italy | | 021 | Texture analysis enables context detection in non-
endoscopic oesophageal tissue samples | Marcel | Gehrung | digital pathology, early detection, texture analysis | Cambridge | UK | | O22 | VINCI - new challenges from Big Data in Imaging | Stefan | Vollmar | co-registration, light sheet
fluorescent microscopy,
parallelization, scripting | Cologne | Germany | | O23 | Metabolic heterogeneity as a PET-biomarker predicts overall survival of pancreatic cancer patients | Esther | Smeets | metabolic heterogeneity,
Pancreatic cancer, texture
features | Nijmegen | Netherlands | | O24 | High-throughput, Python-based processing pipeline for pre-clinical MRI data | Niklas | Pallast | Data Processing, MRI,
Neuroimaging | Cologne | Germany | | O25 | Statistical inference for image reconstruction through Multimode Fibers | Daniele | Ancora | Imaging in disordered
media, Machine learning,
Statistical inference | Rome | Italy | | O26 | Multispectral endoscopy for early detection of dysplasia in Barrett's oesophagus: a pilot study | Dale J | Waterhouse | clinical trial, endoscopy,
multispectral | Cambridge | UK | | O27 | Repositorg - a Free and Open Source Pipeline Package for
the Automatic Transfer, Repositing, Renaming, and
Standardization of Large Data File Collections. | Horea-
Ioan | Ioanas | Data Processing, Optical Imaging, Standardization | Zürich | Switzerland | | O28 | Using convolutional neural networks to create spatial predictors of response to chemotherapy based on H&E histopathology images | Mireia | Crispin-
Ortuzar | Breast cancer, Deep
learning, Digital pathology | Cambridge | UK |