poster #	Abstract Title	Firstname	Surname	keywords	City	Country
P01	Development of machine-learning based hyperspectral endoscopy for the early detection of oesophageal cancer using convolutional neural networks	Alexandru	Grigoroiu	convolutional neuronal network, Data Processing, Machine learning	Cambridge	UK
P02	Using multi-task learning to faithfully encode patches from histopathology images	Prateek	Katiyar	Autoencoders, Deep learning, Multi-task learning	Tübingen	Germany
P03	Big Data Generation by Fully Automated Biomarker Quantification in Medical Imaging using Deeply Supervised Convolutional Neural Networks.	Ana	Jiménez- Pastor	Biomarkers, Deep learning, Medical Imaging	Valencia	Spain
P04	Classification of ovarian tissue using texture analysis and optical coherence tomography	Travis	Sawyer	classification, optical coherence tomography	Tucson	United States
P05	Advanced imaging flow cytometry	Andreas	Kleiber	convolutional neuronal network, Imaging flow cytometry	Jena	Germany
P06	A wide-field multi-modal imaging system for the rapid characterisation of the optical properties of ex vivo tissue in clinic	Wilson	Abby	Multi-modal, Oesophageal Cancer, Optical Imaging	Cambridge	UK
P07	Increasing the information content of tomographic microscopy data by using automatic feature based projection registration	Athanasios	Zacharopoulos	co-registration, light sheet fluorescent microscopy, Optical Imaging	Heraklion	Greece
P08	Complex data analysis of label-free cellular fluorescence.	Dusan	Chorvat	analysis, autofluorescence, Multi-modal	Bratislava	Slovakia
P09	A Data Access Management System for the OCTOPUS Imaging Cluster	Jianguo	Rao	Active directory integration, data access control	Didcot	UK
P11	Data fusion of Raman spectroscopic imaging and MALDI imaging for liver cancer diagnostic	Oleg	Ryabchykov	MALDI imaging, Raman spectroscopic imaging	Jena	Germany
P12	Predictive Modeling of the Antibiotics Susceptibility of E. coli Strains Based on Image Analysis Techniques	Nairveen	Ali		Jena	Germany
P13	Using deep neural networks for classifying complex features in diffraction images	Julian	Zimmermann	coherent diffraction imaging, deep neural networks, image classification	Berlin	Germany

poster#	Abstract Title	Firstname	Surname	keywords	City	Country
O20	A processing pipeline for big data in high-resolution microscopy	Giacomo	Mazzamuto	3D stitching, cell segmentation, high-resolution microscopy	Sesto Fiorentino	Italy
021	Texture analysis enables context detection in non- endoscopic oesophageal tissue samples	Marcel	Gehrung	digital pathology, early detection, texture analysis	Cambridge	UK
O22	VINCI - new challenges from Big Data in Imaging	Stefan	Vollmar	co-registration, light sheet fluorescent microscopy, parallelization, scripting	Cologne	Germany
O23	Metabolic heterogeneity as a PET-biomarker predicts overall survival of pancreatic cancer patients	Esther	Smeets	metabolic heterogeneity, Pancreatic cancer, texture features	Nijmegen	Netherlands
O24	High-throughput, Python-based processing pipeline for pre-clinical MRI data	Niklas	Pallast	Data Processing, MRI, Neuroimaging	Cologne	Germany
O25	Statistical inference for image reconstruction through Multimode Fibers	Daniele	Ancora	Imaging in disordered media, Machine learning, Statistical inference	Rome	Italy
O26	Multispectral endoscopy for early detection of dysplasia in Barrett's oesophagus: a pilot study	Dale J	Waterhouse	clinical trial, endoscopy, multispectral	Cambridge	UK
O27	Repositorg - a Free and Open Source Pipeline Package for the Automatic Transfer, Repositing, Renaming, and Standardization of Large Data File Collections.	Horea- Ioan	Ioanas	Data Processing, Optical Imaging, Standardization	Zürich	Switzerland
O28	Using convolutional neural networks to create spatial predictors of response to chemotherapy based on H&E histopathology images	Mireia	Crispin- Ortuzar	Breast cancer, Deep learning, Digital pathology	Cambridge	UK