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Evolutionary Dynamics of Carcinogenesis

Malignant cancers, whether inherited or sporadic, can be 
characterized by genetic instability within highly selective 
local microenvironments.   This combination promotes so-
matic evolution and the emergences of clades of cells in 
spatially explicit micro-habitats.   The rate of this evolution is 
predicted by Evolutionary Game Theory, and is dramatically 
affected by both Phenotypic (Genotypic) Diversity and Selec-
tion Pressures.     From a practical standpoint, malignancy 
can be defined by these habitats, which increase the prob-
ability that cancers will develop therapy resistant phenotypes. 
The concept of somatic evolution in cancers is not new, being 
articulated by Nowell in 1976 (1).  However, it has been gaining 
wider acceptance (2-5), likely based on two related observa-
tions.  First, malignant cancers have a high degree of mutational 
heterogeneity that can be traced to common ancestors (6, 7).  
Indeed, histological nuclear heterogeneity across cancers has 
been known for years (8) and is a strong predictor of poor prog-
nosis (9). Second, therapies that are exquisitely targeted to 
driver oncogene mutations usually result in benefits measured 
in months, not years, (10).   For most advanced cancers and 
most patients, response to therapy is fleeting, owing to the in-
evitable evolution and proliferation of a resistant population (11).   
Because of these large scale genomic alterations and conse-
quent diversity, the emergence of resistance is a predictable and 
fundamental property of carcinogenesis itself.  This is commonly 
ignored in the design of treatment strategies(12). 

The origins of cancer heterogeneity and the accumulation of 
metabolic hallmarks occur early during carcinogenesis.   All 
carcinomas develop within ducts, which are avascular environ-
ments.   Consequently, the peri-luminal aspects of developing 
cancers are poorly perfused.   These perfusion deficits lead di-
rectly to a physical microenvironment that is pooly oxygenated, 
substrate-limited, and acidic.  This niche is genotoxic and highly 
selective for cancer cells that are hyperglycolytic, resistant to 
apoptosis, chronically autophagic and resistant to acidosis.   
The acidic microenvironment induces local invasion, which can 
be inhibited with systemic buffer therapy.  Once cancers locally 
invade, if they can recapitulate the acidic-hypoxic-limited en-
vironment, they will have an evolutionary selective advantage 
over the stromal cells into which they invade.   It can be shown 
by evolutionary theory that this environment will also generate 
distinct “clades” of tumor cells in spatially explicit micro-habitats.  
From a practical standpoint, malignancy can be defined by 
these habitats, which increase the probability that cancers will 
develop therapy-resistant phenotypes.

Imaging Cancer Physiology

Because the microenvironmental factors of hypoxia, acidity and 
glucose limitation are present in growing solid tumors and be-
cause these factors select for malignancy, there is a compelling 
need to develop non-invasive methods to measure them and their 
spatial distribution.  Such information could have profound effects 
on our understanding of carcinogenesis and malignancy, and 
also provide important information for therapy decision support.  
Tumor oxygenation can be imaged in vivo using either mag-
netic resonance or positron imaging approaches, reviewed in 
(13, 14).   For magnetic resonance, both nuclear (NMR) and 
electron (EPR) imaging approaches have been used.   In MRI, 

both 19-F of exogenous hpoxia sensitive tracers, and 1-H of 
endogenous indicators of biological hypoxia have been used.  
EPRI commonly involves a stable free radical whose linewidths 
are oxygen dependent (15).   In PET imaging most, but not all, 
tracers are based on a 2-nitroimidazole center, which becomes 
covalently trapped in the absence of oxygen.  Optical methods 
are also available.  The most used has been phosphorescence, 
but this use has generally been restricted to window chamber 
models.   A new report uses fluorescently tagged antibodies 
against the biological hypoxia biomarker, CA-IX to identify hy-
poxic volumes in vivo.   In almost all cases, important controls 
compare signal intensities to the immunohistochemical distribu-
tion of pimonidazole.

Tumor pH can also be imaged in vivo using either magnetic reso-
nance or nuclear imaging approaches, reviewed in (16).  In MRI, 
a number of approaches are available, including 31-P MRS of 
2-aminopropylphosphonate, 1-H MRSI of imidazoles, MR relax-
ometry, and chemical exchange saturation transfer (CEST) with 
either hydroxyl or amide-containing tracers (diaCEST) or tracers 
containing paramagnetic rare earths (paraCEST).  Radionuclide 
approaches are currently lmited to the use of a low pH inser-
tion peptide, pHLIP, which can be labeled with 64-Cu or 18-F 
(for PET) or 99m-Tc for SPECT.   Optical methods to measure 
pH are highly developed and can be used in vitro and in vivo. 
Until recently, the concentration of glucose in tumors had to be 
inferred from either invasive microperfusion systems, or through 
reaction-diffusion modeling. However, recently there are two in-
dependent reports where CEST MRI has been used to detect 
and measure glucose levels in tumors (17, 18).  These approach-
es have great potential to illuminate metabolism of cancers.

Image ‘omics

Because these microenvironmental factors are highly selective, 
they will amplify somatic evolution and the emergence of dis-
tinct genetically related sub-populations (clades) of cells within 
tumors.  An emerging advance is to use profound image analy-
sis (“radiomics”) to identify these regions of heterogeneity (19).  
Heterogeneity can be viewed radiographically, wherein a non-
uniform pattern of enhancement or attenuation (“texture”) can 
be associated with poor outcome (20, 21).   These radiographi-
cally visible sub-regions reflect underlying molecular and cellu-
lar alterations.  In order to systematically address this issue, we 
have created a database structure that can be populated with 
images, as well as quantitative image feature data (e.g. Texture, 
Shape, Density features) that can be mined in combination with 
patient outcomes and genetic data from biopsies. This is allow 
real-time data analyses and association of features with prog-
nostic, diagnostic and predictive models (22).

Current quantitative measurements are limited to dimensional 
measurements of tumor size via one (RECIST) or two (WHO) 
dimensional long axis measures (23).   These measures do 
not reflect the complexity of tumor morphology or behavior, 
nor, in many cases, are changes in these measures predic-
tive of therapeutic benefit (24).   When additional quantitative 
measures are performed, they generally average values over 
an entire region of interest (ROI).   In focused studies, texture 
features have been shown to provide significantly higher prog-
nostic power than ROI-based methods (25‑28). This is reflec-
tive of the fact that tumors are highly heterogeneous systems, 
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and that such heterogeneity has high prognostic power (29). 
Profound analyses of such image features can improve predic-
tion of clinical CT (30), MR (31) or PET (32) images.  Although 
paradigm-shifting, these analyses have been performed manu-
ally and the studies were underpowered.  In order to qualify as 
a clinically useful biomarker, such studies have to be performed 
with larger cohorts in prospective, multi-institutional trials.   In 
the current iteration of radiomics, image features have to be 
extracted automatically and with high throughput, putting a high 
premium on novel machine learning algorithm developments.  
The goal of radiomics is to convert images to mineable data, 
with high fidelity and high throughput. The radiomics enterprise 
can be divided into five processes with definable inputs and out-
puts, each with its own challenges that need to be overcome:  (i) 
image acquisition and reconstruction; (ii) image segmentation 
and rendering; (iii) feature extraction and feature qualification 
(iv) databases and data sharing; and (v) ad hoc informatics anal-
yses (19). Each of these steps must be developed de novo and, 
as such, poses discrete challenges that have to be met.   For 
example, optimum protocols for image acquisition and recon-
struction have to be identified and harmonized. Segmentations 
have to be robust and involve minimal operator input. Features 
have to be generated that robustly reflect the complexity of the 
individual volumes, but cannot be overly complex or redundant. 
Informatics data bases that allow incorporation of image fea-
tures and image annotations, along with medical and genetic 
data have to be generated. Finally, the statistical approaches to 
analyze these data have to be optimized, as radiomics is not a 
mature field of study. Variation in results may come from varia-
tions in any of these individual processes.  Thus, after optimiza-
tion, another level of challenge is to harmonize and standard-
ize the entire process, while still allowing for improvement and 
process evolution.
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